Wednesday, February 19, 2014

Superconductivity in Orbit: Scientists Find New Path to Loss-Free Electricity

Armed with just the right atomic arrangements, superconductors allow electricity to flow without loss and radically enhance energy generation, delivery, and storage. Scientists tweak these superconductor recipes by swapping out elements or manipulating the valence electrons in an atom's outermost orbital shell to strike the perfect conductive balance. Most high-temperature superconductors contain atoms with only one orbital impacting performance—but what about mixing those elements with more complex configurations? 


Sunday, December 1, 2013


1.  Hirai, D.; Bremholm, M.; Allred, J. M.; Krizan, J.; Schoop, L. M.; Huang, Q.; Tao, J.; and Cava, R. J., “Spontaneous formation of zigzag chains at the metal-insulator transition in the beta -pyrochlore CsW2O6”, Phys. Rev. Lett., 110, 166402 (2013).

2.  Krejci, A.J.; Thomas, C.G.W; Mandal, J.; Gonzalo-Juan, I.; He, W.; Stillwell, R.L.; Park, J.-H.; Prasai, D.; Volkov, V.; Bolotin, K.I.; and Dickerson J.H. “Using Voronoi Tessellations to Assess Nanoparticle-Nanoparticle Interactions and Ordering in Monolayer Films Formed through Electrophoretic Deposition”, J. of Phys. Chem. B 117, 1664-1669 (2013).

3.  Chen, S., Jenkins, S., Tao, J., Zhu Y., and Chen, J., “Anisotropic Seeded Growth of Cu-M (M=Au, Pt, or Pd) “Bimetallic Nanorods with Tunable Optical and Catalytic Properties”, J. Phys. Chem. C, 117, 8924 (2013).

4.  Han, M.G., Zhu, Y., Wu, L., Aoki, T., Volkov V., Wang, X., Chae, C., and Cheong, S.-W., “Ferroelectric switching dynamics of topological vortex domains in a hexagonal manganite”, Advanced Materials, 25, 2415-2421 (2013).

5.  Hockel, J. L., Pollard, S. D.,  Wetzlar, K. P., Wu, T.,  Zhu, Y.,  Carman, G. P., "Electrically Controlled Reversible and Hysteretic Domain Wall Evolution in Nickel Thin Film/Pb(Mg1/3Nb2/3)O3]0.68-[PbTiO3]0.32 (011) Heterostructure Observed by Lorentz TEM," Applied Physics Letters 102, 242901 (2013).

6.  Hsieh, Y.-C., Zhang, Y., Su, D., Volkov, V.V., Si, R., Wu, L., Zhu, Y., An, W., Liu, P., He, P., Ye, S., Adzic, R.R., Wang, J.X., “Ordered bilayer ruthenium-platinum core-shell nanoparticles as carbon monoxide-tolerant fuel cell catalysts”, Nature Comm., 4, 2466 (2013).

7.  Inada, H., and Zhu, Y., “Secondary electron microscopy in STEM”, chapter in   N. Tanaka Ed., 39 pages, in Scanning Transmission Electron Microscopy, Springer, in press (2013).

8.  Jiang, L., Choi, W.S., Jeen, H., Dong, S., Kim, Y., Han, M.-G., Zhu, Y., Kalinin, S., Dagotto, E., Egami, T., Lee, and Ho, N., "Tunneling Electroresistance Induced by Interfacial Phase Transitions in Ultrathin Oxide Heterostructures", Nano Letters, in press (2013).

9.  Liu, X., Liu, S., Han, M-G., Zhao, L., Deng, H., Li, J., Zhu, Y., Krusin-Elbaum, L., and O'Brien, S., “Magnetoelectricity in CoFe2O4 nanocrystal-P(VDF-HFP) thin films”, Nanoscale Res. Lett., 8, 374 (2013).

10. Meng, Q., Wu, L., and Zhu, Y., “Phonon scattering of interfacial strain field between dissimilar lattices”. Phy. Rev. B 87, 064102 (2013).

11. Nam, K.-W., Bak, S.-M., Hu, E., Yu, X., Zhou, Y., Wang, X., Wu, L., Zhu, Y., Chung, K.-Y., Yang, X.-Q., "Combining In Situ Synchrotron X-Ray Diffraction and Absorption Techniques with Transmission Electron Microscopy to Study the Origin of Thermal Instability in Overcharged Cathode Materials for Lithium-Ion Batteries", Adv. Funct. Mater., 23, 1047-1063 (2013).

12. Pan, C., H. Li, B. Akgun,  S. K. Satijia, Y. Zhu, D. Xu, J. Ortiz, D. Gersappe, and M. H. Rafailovich, "Enhancing the Efficiency of Bulk Heterojunction Solar Cells via Templated Self-Assembly", ACS Macromolecules, 46 1812-1819 (2013).

13. Piazza, L., Mann, A., Carbone, F., Ma, C., Yang, H., Li, L., and Zhu, Y., “Ultrafast structural and electronic dynamics of the metallic phase in a layered manganite”, Structure Dynamics, in press (2013).

14. Pollard, S. D., Malec, M., Bellagia, M., Kawasaki, M., and Zhu, Y., "Magnetic imaging with a Zernike-type phase plate in a transmission electron microscope," Appl. Phys. Lett., 102, 192401 (2013) (Cover article).

15. Pollard, S. D., and Zhu, Y., "The Aharonov-Bohm effect, magnetic monopoles, and reversal in spin-ice lattices," Microscopy 62 (suppl 1): S55-S64, (2013).

16. Pollard, S. D., and Zhu, Y., Gauge theory and artificial spin ices,: imaging emergent monopoles with electron microscopy, book chapter, in “In Memory of Akira Tonomura: Physicist and Electron Microscopist”, K. Fujikawa and Y. A. Ono Eds., World Scientific Publishing Co. Pte. Ltd., p. 110-121, Exp. Pub. date: October 31, 2013, ISBN-13: 978-981-4472-88-3 

17. Pulecio, J. F., Bhanja, S., and Sarkar, S., “Parallel Energy Minimizing Computation via Dipolar Coupled Single Domain Nanomagnets”, In J. E. Morris & K. Iniewski (Eds.), Nanoelectronic Device Applications Handbook (p. 940). CRC Press (2013).

18. Santos-Ortiz, R., Volkov, V., Schmid, S., Kuo, F.-L., Kisslinger, K., Nag, S., Banerjee R., Zhu, Y., and Shepherd, N. D., “The Microstructure and Electronic Band Structure of Pulsed Laser Deposited Iron Fluoride Thin-Film for Battery Electrodes”, ACS Appl. Materials and Interfaces, 5(7), 2387-2391 (2013).  

19. Volkov, V.V., Han, M.-G., and Zhu, Y., “Double-resolution electron holography with simple Fourier transform of fringe-shifted holograms”, Ultramicroscopy, 134, 175-184 (2013).

20. Wang, F., Wu, L., Key, B., Yang, X.-Q., Grey, C.P., Zhu, Y., and Graetz, J., “Electrochemical Reaction of Lithium with Nanostructured Silicon Anodes: a Study by in-situ Synchrotron X-ray Diffraction and Electron Energy-Loss Spectroscopy”, Adv. Energy Mater., 3, 1324–1331 (2013).

21. Wang, F., Wu, L., Ma. C., Su, D., Zhu, Y., and Graetz, J., “Excess Li storage and charge compensation in nanoscale Li4+xTi5O12”, Nanotechnology, 24 424006 (2013).

22. Wu, L., Meng, Q., Jooss, Ch., Zheng, J.-C., Inada, H., Su, D., Li, Q., and Zhu, Y., “Origin of Phonon Glass –Electron Crystal behavior in Thermoelectric Layered Cobaltate”, Adv. Funct. Mater. DOI: 10.1002/adfm.201301098, published online: 13 June 2013.

23. Yu X; Pan H; Wan W; Ma C; Bai J; Meng Q; Ehrlich S; Hu Y; Yang X; “A size-dependent sodium storage mechanism in Li4Ti5O12 investigated by a novel characterization technique combining in situ x-ray diffraction and chemical sodiation”, Nano letters  13, 4721(2013).

24. Zhang, Yu., Ma, C., Zhu, Y., Si, R., Cai, Y., Wang, J.X., Adzic, R.R., "Hollow core supported Pt monolayer catalysts for oxygen reduction", Catalysis Today 202 50-54 (2013).

25. Zhu, P., J. Cao, Y. Zhu, J. Geck, Y. Hidaka, S. Pjerov, T. Ritschel, H. Berger, Y. Shen, R. Tobey, J.P. Hill and X.J. Wang, "Dynamic separation of electron excitation and lattice heating during the photoinduced melting of the periodic lattice distortion in 2H-TaSe2", Appl. Phys. Lett., 103 071914 (2013).

Tuesday, September 18, 2012

Magnetic Vortex Reveals Key to Spintronic Speed Limit

UPTON, NY — The evolution of digital electronics is a story of miniaturization – each generation of circuitry requires less space and energy to perform the same tasks. But even as high-speed processors move into handheld smart phones, current data storage technology has a functional limit: magnetically stored digital information becomes unstable when too tightly packed. The answer to maintaining the breath-taking pace of our ongoing computer revolution may be the denser, faster, and smarter technology of spintronics.
Spintronic devices use electron spin, a subtle quantum characteristic, to write and read information. But to mobilize this emerging technology, scientists must understand exactly how to manipulate spin as a reliable carrier of computer code. Now, scientists at the Department of Energy’s (DOE) Brookhaven National Laboratory have precisely measured a key parameter of electron interactions called non-adiabatic spin torque that is essential to the future development of spintronic devices... Read more

Unprecedented Subatomic Details of Exotic Ferroelectric Nanomaterials

As scientists learn to manipulate little-understood nanoscale materials, they are laying the foundation for a future of more compact, efficient, and innovative devices. In research to be published online July 8 in the journal Nature Materials, scientists at the U.S. Department of Energy’s Brookhaven National Laboratory, Lawrence Berkeley National Laboratory, and other collaborating institutions describe one such advance — a technique revealing unprecedented details about the atomic structure and behavior of exotic ferroelectric materials, which are uniquely equipped to store digital information. This research could guide the scaling up of these exciting materials and usher in a new generation of advanced electronics.
Brookhaven scientists used a technique called electron holography to capture images of the electric fields created by the materials’ atomic displacement with picometer precision — that’s the trillionths-of-a-meter scale crucial to understanding these promising nanoparticles... Link


1. Akey, A.J., Lu, C., Wu, L., Zhu, Y., and Herman, I.P., “Anomalous photoluminescence Stokes shift in CdSe nanoparticle and carbon nanotube hybrids”, Phys. Rev. B 85, 045404 (2012).

2. Bo, S-H., Wang, F.,  Janssen, Y., Zeng, D.L., Nam, K-W.,  Xu, W.Q.,  Du, L-S.,  Stephens, P., Graetz, J., Yang, X-Q.,  Zhu, Y., Parise, J., Grey, C.,  and Khalifah, P., “Degradation and (De)lithiation Processes in the High Capacity Battery Material LiFeBO3”, J. Chem. Mater,  22 8799 (2012).

3. Chen, H., Hautier, G., Jain, A., Moore, C., Kang, B., Doe, R., Wu, L., Zhu, Y., Tang, Y., and Ceder, G., "Carbonophosphates: A New Family of Cathode Materials for Li-Ion Batteries Identified Computationally", Chem. Mater., 24, 2009-2016 (2012).

4. Chen, W.F., Sasaki, K., Ma, C., Frenkel, A.I., Marinkovic, N., Muckerman, J.T., Zhu, Y., and Adzic, R.R., “Hydrogen-Evolution Catalysts Based on Non-Nobel Metal Nickel-Molybdenum Nitride Nanosheets”, Angew. Chem. Int. Ed. 51 6131 (2012).

5. Ji H.; Allred J. M.; Ni N.; Tao J.; Neupane M.; Wray A.; Xu S.; Hasan M. Z.; and Cava R. J., “Bulk intergrowth of a topological insulator with a room-temperature ferromagnet”, Phys. Rev. B 85, 165315 (2012)

6. Nam, K.-W., Bak, S.-M., Hu, E., Yu, X., Zhou, Y., Wang, X., Wu, L., Zhu, Y., Chung, K.-Y., Yang, X.-Q., "Combining In Situ Synchrotron X-Ray Diffraction and Absorption Techniques with Transmission Electron Microscopy to Study the Origin of Thermal Instability in Overcharged Cathode Materials for Lithium-Ion Batteries", Adv. Funct. Mater. (2012).

7. Polking, M. J.,  Han, M.-G., Yourdkhani, A.,  Petkov, V., Kisielowski, C. F.,  Volkov, V.V.,  Zhu, Y., Caruntu, G., Alivisatos, A. P., and Ramesh, R.,“Ferroelectric order in individual nanometer-scale crystals”, Nature Materials, 11 700-709 (2012).

8. Pollard, S. D., Huang, L., Buchanan, K.S., Arena, D.A., Zhu, Y., “Direct Dynamic Imaging of Non-Adiabatic Spin Torque Effects”, Nature Communications, in press (2012).

9. Pollard, S.D., Volkov, V.V., and Zhu, Y., “Propagation of magnetic charge monopoles and Dirac flux strings in an artificial spin-ice lattice “, Phys. Rev. B (Rapid Comm. as Editors’ suggestions), 85, 180402(R) (2012).

10. Saucke, G., Norpoth, J., Jooss, Ch., Su, D., and Zhu, Y., “Polaron absorption for photovoltaic energy conversion in a manganite-titanate pn heterojunction”, Phys., Rev., B 85, 165315 (2012).

11. Tao J. “Nanoclusters in Magnetoresistance”, Nanotechnology Reviews, invited review article, in press.

12. Wu, L., Egerton, R.F., and Zhu, Y., “Image simulation for atomic resolution secondary electron image”, Ultramicroscopy, in press.

13. Xin, X., Zhou, X.F., Wang, F., Yao, X.Y., Xu, X.X., Zhu, Y., and Liu, Z.P., “A 3D Porous Architecture of Si/Graphene Nanocomposite as High-Performance Anode Materials for Li-Ion Batteries”, J. Mater. Chem., 22, 7724-7730 (2012).

14. Xu, Z., Hine, C.R., Maye, M.M., Meng, Q.P., and Cotlet, M., “Shell Thickness Dependent Photoinduced Hole Transfer in Hybrid Conjugated Polymer/Quantum Dot Nanocomposites: From Ensemble to Single Hybrid Level”, ACS Nano, 6 4984–4992 (2012).

15. Zeng, J., Zhu, C., Tao, J., Jin, M., Zhang, H., Li, Z.-Y., Zhu, Y., and Xia, Y., "Controlling nucleation and growth of silver on palladium nanocubes by manipulating the reaction kinetics" Angew. Chemie Int. Ed., 51, 2354-2358 (2012)

16. Zhang, Yu., Ma, C., Zhu, Y., Si, R., Cai, Y., Wang, J.X., Adzic, R.R., “Hollow core supported Pt monolayer catalysts for oxygen reduction”, Catalysis Today (in press).

17. Zhu, Y., Milas, M., Rameau, J., and Sfeir, M., "The Multimodal Optical Nanoprobe for Advanced Electron Microscopy", invited article, Microscopy Today, in press, 2012

18. Zhu, Y., and Wu, L., "Shadow Imaging for Charge Distribution Analysis", Book Chapter in “Electron Crystallography Meets Powder Diffraction”, U. Kolb, K. Shankland, L. Meshi, A. Avilov, and W. David Eds., Springer, in press.

19. Ma, C., Qin, Y., Yang, H., Tian, H., Li, J., Sardar, K.,, Walton, R.I., Su, D., Wu, L., and Zhu, Y., “Microstructure and oxidation states in multiferroic Lu2(Fe,Mn)3O7”, J. Appl. Phys., 094105 (2012).

20.  Neilson, J. R; Llobet A.; Stier A. V.; Wu L.; Wen J.; Tao J.; Zhu, Y.; Tesanovic Z. B.; Armitage N. P.; and McQueen M. T., “Mixed-valence-driven heavy-fermion behavior and superconductivity in KNi2Se2”, Phys. Rev. B 86, 054512 (2012) (highlighted as “Editors’ Suggestion”)

21. Norpoth, J., Su, D., Inada, H., Sievers, S., Zhu, Y., and Jooss, Ch., “Interfacial reconstruction and superconductivity in cuprate-manganite multilayers of YBa2Cu3O7 and Pr0.68Ca0.32MnO3”, New J, of Physics 14 093009 (2012).

22. Raabe, S., Mierwaldt, D., Ciston, J., Uijttewaal, M., Stein,H., Hoffmann, J., Zhu, Y., Blöchl, P., and Jooss, Ch., “In-situ electrochemical electron microscopy study of oxygen evolution activity of doped manganite perovskites", Advanced Functional Materials, DOI: 10.1002/adfm.201103173 (2012).

23. Schofield, M.A., He, J., Volkov, V.V., and Zhu, Y.,“Giant magneto-resistance estimated from direct observation of nanoscale ferromagnetic domain evolution in La0.325Pr0.3Ca0.375MnO3”, J. of Appl. Phys. 112, 053924 (2012).

24. Si, R., Tao, J., Evans, J., Park, B. J., Barrio, L., Hanson, J. C., Zhu, Y., Hrbek, J.,  and Rodriguez, J. A., “Effect of Ceria on Gold-Titania Catalysts for the Water-Gas Shift Reaction: Fundamental Studies for Au/CeOx/TiO2(110) and Au/CeOx/TiO2 Powders”, J. Phys. Chem. C, 116, 23547 (2012).

25. Tao, J., ”Nanoclusters in Magnetoresistance”, Nanotechnology Reviews, vol 1, issue 4, 301-311 (2012) (invited review article).

26. Wang, F., Yu, H.-C., Chen, M.H., Wu, L., Pereira, N., Thornton, K., Van der Ven, A., Zhu, Y., Amatucci, G.G., and Graetz, J., "Tracking lithium transport and electrochemical reactions in nanoparticles", Nature Communications, 3, 1201 (2012).

27. Xie, S., Jin, M., Tao, J., Wang, Y., Xie, Z., Zhu, Y., and Xia, Y., “Synthesis and characterization of Pd@MxCu1-x (M=Au, Pd, and Pt) nanocages with porous walls and a yolk-shell structure through galvanic replacement reactions”, Chemistry: A European Journal, 18, 14974-14980, (2012), (highlighted on the cover).

28. Zhu, C., Zeng, J., Tao, J., Johnson, M., Schmidt-Krey, I., Blubaugh, L., Zhu, Y., Gu, Z., and Xia, Y., “Kinetically controlled overgrowth of Ag or Au on Pd nanocrystal seeds: From hybrid dimers to non-concentric and concentric bimetallic nanocrystals”, J. of Am. Chem. Soc., 134, 15823 (2012).

Wednesday, March 28, 2012


1. Akey, A.J., Lu, C., Wu, L., Zhu, Y., and Herman, I.P., “Anomalous photoluminescence Stokes shift in CdSe nanoparticle and carbon nanotube hybrids”, Phys. Rev. B 85, 045404 (2012)
2. Bo, S-H., Wang, F., Janssen, Y., Zeng, D., Nam, K.-W., Xu, W., Du, L.-S., Graetz, J., Yang, X.Q., Zhu, Y., Parise, J., Grey, C., and Khalifah, P., J. Mater. Chem., DOI: 10.1039/c2jm16436a (2012).
3. Chen, H., Wu, L., Zhang, L., Zhu, Y., Grey, C.P., "LiCoO2 Concaved Cuboctahedrons from symmetry -controlled topological reactions", J. Am. Chem. Soc. 2011, 133, 262-270.
4. Y. Cai, C. Ma, Y. Zhu, J. X. Wang, and R.R. Adzic "Low-Coordination Sites in Oxygen-Reduction Electrocatalysis: Their Roles and Methods for Removal", Langmuir 2011, 27, 8540-8547
5. Ciston,J., Si, R., Rodriguez, J.A., Hanson, J.C., Martínez-Arias,A., Fernandez-García,M., and Zhu, Y., “Morphological and Structural Changes during the Reduction and Reoxidation of CuO/CeO2 and Ce1 xCuxO2 Nanocatalysts: In Situ Studies with Environmental TEM, XRD, and XAS”, J. Phys. Chem. C 2011, 115, 13851–13859
6. Inada, H., Su, D., Egerton, R.F., Konno, M., Wu, L., Ciston, J., Wall, J., and Zhu, Y., "Atomic Imaging Using Secondary Electrons in a Scanning Transmission Electron Microscope : Experimental Observations and Possible Mechanisms", invited articles for the special issue in honor of John Spence, Ultramicroscopy 111 (2011) 865-876.
7. Jang, H. W.; Felker, D. A.; Wang, Y.; Niranjan, M. K.; Zhang, Y.; Nelson, C. T.; Su, D.; Folkman, C. M.; Bark, C. W.; Baek, S. H.; Lee, S.; Janicka, K.; Zhu, Y.; Pan, X. Q.; Fong, D.; M. S. Rzchowski, C. B. E., "Strongly-correlated two-dimensional electron gas at oxide interfaces", Science, 2011, 331, 886-889.
8. M. Jiang, B. Lim, J. Tao, Pedro H. C. Camargo, C. Ma, Y. Zhu and Y. Xia; "Epitaxial overgrowth of platinum on palladium nanocrystals", Nanoscale, 2, 2406-2411 (2010).
9. Q. Meng, D. O. Welch, and Y. Zhu "Oxygen reordering near room temperature in YBa2Cu3O6+x: A thermodynamic model", Phys. Rev. B 83, 144106 1-6 (2011).
10. Meng, Y.-S., McGilvray, T., Yang, M.-C., Gostovic, D., Wang, F., Zeng, D., Zhu, Y., and Graetz, J., "In Situ Analytical Electron Microscopy for Probing Nanoscale Electrochemistry", Interface, The Electrochemical Society, 20, 49-53, 2011
11. Ofan, A., Gaathon, O., Zhang, L., Evans-Lutterodt, K., Bakhru, S., Bakhru, H., Zhu, Y., Welch, D., Osgood, Jr. R.M., "Twinning and dislocation pileups in heavily implanted LiNbO3", Phys. Rev. B, 83, 064104 1-8 (2011).
12. Raabe, S., Mierwaldt, D., Ciston, J., Uijttewaal, M., Stein,H., Hoffmann, J., Zhu, Y., Blöchl, P., and Jooss, Ch., “In-situ electrochemical electron microscopy study of oxygen evolution activity of doped manganite perovskites", Advanced Functional Materials, Accepted
13. G. Saucke, J. Norpoth, D. Su, Y. Zhu and Ch. Jooss, “Polaron absorption for photovoltaic energy conversion in a manganite-titanate pn-heterojunction”, Phys. Rev. B, accepted.
14. Smadici, S., Lee, J.C.T., Morales, J., Logvenov, G., Pelleg, O., Bozovic, I., Zhu, Y., and Abbamonte, P., "Graded orbital occupation near interfaces in a La2NiO4-La2CuO4 superlattice", Phys. Rev. B 84, 155411 1-10 (2011).
15. Sutter, E., Albrecht, P., Wang, B., Bocquet, M.-L., Wu, L., Zhu, Y., and Sutter, P., "Monodisperse Ru nanocluster arrays templated by monolayer graphene on Ru", Surface Science, 605 1676-1684 (2011).
16. Tao, J., Niebieskikwiat, D., Jie, Q., Schofield, M.A., Wu, L.,, Li, Q., and Zhu, Y., “Role of structurally and magnetically modified nanoclusters in colossal magnetoresistance”, PNAS 108 20941–20946 (2011).
17. Tan, Z., Patel, V., Likharev, K. K., Su, D., and Zhu, Y., "Experimental study of resistive bistability in metal oxide junctions", Appl. Phys. A (2011) 103, 293-300.
18. Valset, K., Taftø, J., Wu, L., and Zhu, Y., “Anharmonic thermal motion of atoms in thermoelectric Mg2Si studied via convergent-beam electron diffraction”, Phys. Rev. B 84, 220301(R) (2011)
19. Wang, J.X., Ma, C., Choi, Y.-M., Su, D., Zhu, Y., Liu, P., Si, R., Vukmirovic, M.B., Zhang, Y., and Adzic, R.R., “ Kirkendall Effect and Lattice Contraction in Nanocatalysts: A New Strategy to Enhance Sustainable Activity”, J. Am. Chem. Soc., 133, 13551–13557 (2011).
20. Wang, F., Graetz, J., Moreno, M.S., Ma, C., Wu, L., Volkov, V.V., and Zhu, Y., "?Chemical Distribution and Bonding State of Lithium in Intercalated Graphite: Identification with Optimized Electron Energy-loss Spectroscopy", ACS Nano, 5 1190-1197 (2011)
21. Wang, F., Robert, R., Chernova, N. A., Pereira, N., Omenya, F., Badway, F., Hua, Ruotolo, X., M., Zhang, R., Wu, L., Volkov, V., Su, D., Key, B., Whittingham, M. S., Grey, C. P., Amatucci, G. G., Zhu, Y., and Graetz, J., "Conversion Reaction Mechanisms in Lithium Ion Batteries: Study of the Binary Metal Fluoride Electrodes", J. Am. Chem. Soc., 133, 18828–18836.
22. Wu, L., Nam, K.-W., Wang, X., Zhou, Y., Zheng, J.-C., Yang, X.Q., and Zhu, Y., "Structural Origin of Overcharge-Induced Thermal Instability of Ni-Containing Layered-Cathodes for High-Energy-Density Lithium Batteries", Chem. Mater., 23, 3953-3960 (2011).
23. Xin, X., Zhou, X., Wang, F., Yao, X., Xu, X., Zhu, Y., and Liu, Z., “A 3D porous architecture of Si/graphene nanocomposite as high-performance anode materials for Li-ion batteries”, J. Mater. Chem. DOI: 10.1039/c2jm00120a
24. Zeng, J.; Tao, J.; Li, W.; Grant, J.; Zhu, Y. and Xia, Y., "A mechanistic study on the formation of silver nanoplates in the presence of silver seeds and citric acid or citrate ions", Chem. Asian J. 2011, 6, 376 - 379.
25. Zeng J., Tao J., Su D., Zhu Y., Qing. D., and Xia Y., "Selective Sulfuration at the Corner Sites of a Silver Nanocrystal and Its Use in Stabilization of the Shape", Nano Lett. 11, 3010-3015 (2011).
26. Zeng, J., Zhu, C., Tao, J., Jin, M., Zhang, H., Li, Z-Y., Zhu, Y., and Xia, Y., “Controlling the Nucleation and Growth of Silver on Palladium Nanocubes by Manipulating the Reaction Kinetics”, Angew. Chem. Int. Ed., 51, 2354 –2358 (2012).
27. Zheng , Y., Tao, J., Liu, H., Zeng, J., Yu, T., Ma, Y., Moran, C., Wu, L., Zhu, Y., Liu, J., and Xia, Y., "Facile Synthesis of Gold Nanorice Enclosed by High-Index Facets and Its Application for CO Oxidation", Small, 7 2307-2312 (2011).
28. Zhou, H., Wang, H.-Q., Wu, L., Zhang, L., Kisslinger, K., Zhu, Y., Chen, X., Zhan, H., and Kang, J., "Wurtzite ZnO (001) films grown on cubic MgO (001) with bulk-like opto-electronic properties", Appl. Phys. Let., 99, 141917 (2011).
29. Zhou, X., Wang, F., Zhu, Y., and Liu, Z., J. of Mater. Chem. "Graphene modified LiFePO4 cathode materials for high power lithium ion batteries", J. Mater. Chem., 21, 3353-3358 (2011).
30. Zhu, Y., and Inada, H., "Scanning Electron Microscopy", Encyclopedia of Nanotechnology, Springer, 2011
31. Zhu, Y., Milas, M., Rameau , J., and Sfeir, M., “The Multimodal Optical Nanoprobe for Advanced Electron Microscopy”, invited article, Microscopy Today, in press, 2012
32. Su D., Meng, Q., Vaz, C. A. F., Han, M.-G., Segal, Y., Walker, J., Sawicki, M., Broadbridge, Ch., Ahn, C. H., “Origin of 90 degrees domain wall pinning in Pb(Zr(0.2)Ti(0.8))O(3) heteroepitaxial thin films”,  Appl. Phys. Lett., 99, 102902(2011).
33. Zhouguang Lu, Hailong Chen, Rosa Robert, Ben Y. X. Zhu, Jianqiu Deng, Lijun Wu, C. Y. Chung, and Clare P. Grey, “Citric Acid- and Ammonium-Mediated Morphological Transformations of Olivine LiFePO4 Particles”, Chem. Mater., 23, 2848–2859 (2011).
34. Xiao-Jian Wang, Hai-Yan Chen, Xiqian Yu, Lijun Wu, Kyung-Wan Nam, Jianming Bai, Hong Li, Xuejie Huang and Xiao-Qing Yang, “A new in situ synchrotron X-ray diffraction technique to study the chemical delithiation of LiFePO4”, Chem. Commun., 47, 7170–7172 (2011).
35. Juan Zhou, Qing Jie, Lijun Wu, Ivo Dimitrov, and Qiang Li, Xun Shi, “Nanostructures and defects in nonequilibrium-synthesized filled skutterudite CeFe4Sb12”, J. Mater. Res., 26, No. 15, (2011).
36. J.Q. He, V.V. Volkov, T. Asaka, S. Chaudhuri, R.C. Budhani and Y. Zhu, “Competing two-phase coexistence in doped manganites: Direct observations by in situ Lorentz electron microscopy”, Physical Review B, 82, 224404 (2010). 

Monday, June 27, 2011

BNL Wins Two R&D 100 Awards for Imaging Devices

UPTON, NY — The U.S. Department of Energy’s (DOE) Brookhaven National Laboratory has won two R&D 100 Awards for developing imaging tools that will help researchers study materials ranging from seventeenth-century paintings to photovoltaics. The new devices promise to unlock scientific secrets with greater depth and