Thursday, December 11, 2014

Unusual Electronic State Found in New Class of Unconventional Superconductors

chain of atoms
A team of scientists from the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, Columbia Engineering, Columbia Physics and Kyoto University has discovered an unusual form of electronic order in a new family of unconventional superconductors. The finding, described in the journal Nature Communications, establishes an unexpected connection between this new group of titanium-oxypnictide superconductors and the more familiar cuprates and iron-pnictides, providing scientists with a whole new family of materials from which they can gain deeper insights into the mysteries of high-temperature superconductivity.
"Finding this new material is a bit like an archeologist finding a new Egyptian pharaoh's tomb," said Simon Billinge, a physicist at Brookhaven Lab and Columbia University's School of Engineering and Applied Science, who led the research team. "As we try and solve the mysteries behind unconventional superconductivity, we need to discover different but related systems to give us a more complete picture of what is going on—just as a new tomb will turn up treasures not found before, giving a more complete picture of ancient Egyptian society."
Harnessing the power of superconductivity, or the ability of certain materials to conduct electricity with zero energy loss, is one of the most exciting possibilities for creating a more energy-efficient future. But because most superconductors only work at very low temperatures—just a few degrees above absolute zero, or -273 degrees Celsius—they are not yet useful for everyday life. The discovery in the 1980s of "high-temperature" superconductors that work at warmer temperatures (though still not room temperature) was a giant step forward, offering scientists the hope that a complete understanding of what enables these materials to carry loss-free current would help them design new materials for everyday applications. Each new discovery of a common theme among these materials is helping scientists unlock pieces of the puzzle.
This work was supported by the DOE Office of Science, the U.S. National Science Foundation (NSF, OISE-0968226), the Japan Society of the Promotion of Science, the Japan Atomic Energy Agency, and the Friends of Todai Inc. 
Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the UnitedStates, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.




Monday, December 8, 2014

Publications 2014

1.        Bansal, N., Koirala, N., Brahlek, M., Han, M.-G., Zhu, Y., Cao, Y., Waugh, J., Dessau, D.S., and Oh, S., “Robust topological surface states of Bi2Se3 thin films on amorphous SiO2/Si Substrate and a large ambipolar gating effect”, Appl. Phys. Lett., 104, 241606 (2014).
2.        Chapler, B. C.; Post, K. W.; Richardella, A. R.; Lee, J. S.; Tao, J.; Samarth, N.; and Basov, D. N., “Infrared electrodynamics and ferromagnetism in the topological semiconductors Bi2Te3 and Mn-doped Bi2Te3”, Phys. Rev. B 89, 235308 (2014).
3.        Chen, W.-F., Schneider, J.M., Sasaki, K., Wang, C.-H., Schneider, J. Iyer, Shi., Iyer, Shw., Zhu, Y., Muckerman, J.T., and Fujita, E., “Tungsten Carbide–Nitride on Graphene Nanoplatelets as a Durable Hydrogen Evolution Electrocatalyst”, ChemSusChem, 7, 2414 – 2418 (2014).
4.        Crane, C. C.,  J. Tao, F. Wang, Y. M. Zhu, J. Y. Chen, "Mask-Assisted Seeded Growth of Segmented Metallic Heteronanostructures," Journal of Physical Chemistry C 118, 28134-28142 (2014)
5.        Cui, W., Li, M., Dai, Z., Meng, Q., and Zhu, Y., “Near-field optical effect of a core-shell nanostructure in proximity to a flat surface”, J. of Chem. Phys., 140, 044109 (2014).
6.        Dai, Y., S. Cai, L. Wu, W. Yang, J. Xie, W. Wen, J-C. Zheng and Y. Zhu, "Surface modified CFx cathode material for ultrafast discharge and high energy density", J. Mater. Chem. A, 2, 20896-20901 (2014).
7.        Das, S., Rastogi, A., Wu, L., Zheng, J.-C., Hossain, Z., Zhu, Y., and Budhani, R.C., “Kondo scattering in δ-doped LaTiO3/SrTiO3 interfaces: Renormalization by spin-orbit interactions”, Phys. Rev. B 90, 081107(R) (2014).
8.        Han, M.-G., Marshall, M.S.J., Wu, L., Schofield, M.A., Aoki, T., Twesten, R., Hoffman, J., Walker, F.J., Ahn, C.H., and Zhu, Y., “Interface-induced nonswitchable domains in ferroelectric thin films”, Nat. Comm., 5:4693 (2014).
9.        He, K., Zhou, Y., Gao, P., Wang, L., Pereira, N., Amatucci, G.G., Nam, W.K., Yang, X.Q., Zhu, Y., Wang, F., Su, D., “Sodiation via Heterogeneous Disproportionation in FeF2 Electrodes for Sodium-Ion Batteries”, ACS Nano, 8, 7251 (2014).
10.     Hu, H., Zhu, Y., Shi, X., Li, Q., Zhong, R., Schneeloch, J., Gu, G., Tranquada, J., and Billinge, S.J.L., “Nanoscale coherent intergrowthlike defects in a crystal of La1.9Ca1.1Cu2O6+x made superconducting by high-pressure oxygen annealing”, Phys. Rev. B, 90, 134518 (2014).
11.     Kuttiyiel, K.A., Sasaki, K., Su, D., Wu, L., Zhu, Y., and Adzic, R.R., “Au–Promoted Structurally Ordered Intermetallic PdCo Nanoparticles for the Oxygen Reduction Reaction”, Nat. Comm., 5:5185 (2014).
12.     Li, M., Dai, Z., Cui, W., Wang, Z., Katmis, F., Wang, J., Le, P., Wu, L., and Zhu, Y.,“Tunable THz surface plasmon polariton based on a topological insulator/layered superconductor hybrid structure”, Phys. Rev. B 89, 235432 (2014).
13.     Liu, S., Akbashev, A., Yang, X., Liu, X., Li, W., Zhao, L., Li, X., Couzis, A., Han, M.-G., Zhu, Y., Krusin-Elbaum, L., Li, J., Huang, L., Billinge, S., Spanier, J., and O’Brien, S., “Hollandites as a new class of multiferroics”, Scientific Reports, 4, 6203 (2014).
14.     Liu, J., Chang, D., Whitfield, P., Janssen, Y., Yu, X., Zhou, Y., Bai, J., Ko, J., Nam, K.W., Wu, L., Zhu, Y., Feygenson, M., Amatucci, G., Van der Ven, A., Yang, X.-Q., and Khalifah, P., “Ionic Conduction in Cubic Na3TiP3O9N, a Secondary Na-Ion Battery Cathode with Extremely Low Volume Change”, Chem. Mater. 26, 32953305 (2014).
15.     Ma, C., Wu, L., Yin, W.-G., Yang, H., Shi, H., Wang, Z., Li, J., Homes, C.C., and Zhu, Y., “Strong Coupling of the Iron-Quadrupole and Anion-Dipole Polarizations in Ba(Fe1xCox)2As2, Phys. Rev. Lett. 112, 077001 (2014).
16.     Marshall, M.S.J, Malashevich, A., Disa, A.S., Han, M.-G., Chen, H., Zhu, Y., Ismail-Beigi, S., Walker, F.J., and Ahn, C.H., “Conduction at a ferroelectric interface”, Phys. Rev. Applied, 2, 061001 (2014) Editor’s Suggestion.
17.     Patete, J.M., Han, J., Tiano, A.L., Liu, H., Han, M.-G., Simonson, J.W., Li, Y., Santulli, A.C., Aronson, M.C., Frenkel, A.I., Zhu, Y., and Wong, S.S., “Observation of ferroelectricity and structure-dependent magnetic behavior in novel one-dimensional motifs of pure, crystalline yttrium manganese oxides”, J. of Phys. Chem. C, 118, 21695-21705 (2014).
18.     Piazza, L., Mann, A., Ma, C., Yang, H., Zhu, Y., Li, L., and Carbone, F., "Ultrafast structural and electronic dynamics of the metallic phase in a layered manganite", Structure Dynamics, 1  014501 (2014).
19.     Pulecio, J.F., Pollard, S.D., Warnicke, P., Arena, D.A., and Zhu, Y., “Symmetry breaking of magnetic vortices before annihilation,” Appl. Phys. Lett. 105, 132403 (2014).
20.     Pulecio, J.F., Warnicke, P., Pollard, S.D., Arena, D.A., and Zhu, Y., “Coherence and modality of driven interlayer-coupled magnetic vortices,” Nat. Comm., 5, 3760 (2014)
21.     Rout, P. K., Pandey, H., Wu, L., Anupam, Joshi, P.C., Hossain, Z., Zhu, Y., and Budhani, R.C., “Two-dimensional electron-gas-like charge transport at the interface between a magnetic Heusler alloy and SrTiO3”, Phys. Rev. B. (Rapid Comm) 89, 020401(R) (2014).
22.     Schoop, L.; Hirschberger, M.; Tao, J.; Felser, C.; Ong, N. P.; and Cava, R. J., “Paramagnetic to ferromagnetic phase transition in lightly Fe-doped Cr2B”, Phys. Rev. B, 89, 224417 (2014).
23.     Smith, G J., Simonson, J W., Orvis, T., Marques, C., Grose, J.E., Kistner-Morris, J.J., Wu, L., Cho, K., Kim, H., Tanatar, M.A., Garlea, V.O., Prozorov, R., Zhu, Y., and Aronson, M.C.,“Intrinsic nanostructure in Zr2xFe4Si16y (x = 0.81, y = 6.06)”, J. Phys.: Condens. Matter. 26, 376002 (2014)
24.     Sokolov, D. A.,  Aronson, M. C.,  Wu, L., Zhu, Y., Nelson, C.,  Mansfield, J. F.,  Sun, K., Erwin, R., Lynn, J. W., Lumsden, M.,  and Nagler, S. E., “Neutron, electron, and x-ray scattering investigation of Cr1xVx near quantum criticality, Phys. Rev. B 90, 035139 (2014).
25.     Wang, X., Mostovoy, M., Han, M.-G., Horibe, Y., Aoki, T., Zhu, Y., and Cheong, S.-W., “Unfolding of vortices into topological stripes in a multiferroic material”, Phys. Rev. Lett., 112, 247601 (2014).
26.     Wu, L., Meng, Q., Jooss, Ch., Zheng, J.-C., Inada, H., Su, D., Li, Q., and Zhu, Y., “Origin of Phonon Glass –Electron Crystal behavior in Thermoelectric Layered Cobaltate”, Adv. Funct. Mater. 23, 5728-5736 (2013).
27.     Xia, X; Figueroa-Cosme, L.; Tao, J.; Peng, H-C.; Niu, G.; Zhu, Y.; and Xia, Y.,  “Facile Synthesis of Iridium Nanocrystals with Well-Controlled Facets Using Seed-Mediated Growth”, J. Am. Chem. Soc., 136, 10878 (2014).
28.     Zhang, L.; Choi, S.; Tao, J.; Peng, HC.; Xie, SF.; Zhu, YM.; Xie, ZX; Xia, YN.; "Pd-Cu Bimetallic Tripods: A Mechanistic Understanding of the Synthesis and Their Enhanced Electrocatalytic Activity for Formic Acid Oxidation", Advanced Functional Materials, 24, 7520-7529 (2014).
29.     Zhang, Y., Hsieh, Y.-C., Volkov, V., Su, D., An, W., Si, R., Zhu, Y., Liu, P., Wang, J., and Adzic, R., “High performance Pt monolayer catalysts produced via core-catalyzed coating in ethanol", ACS Catalysis, 4, 738742 (2014).
30.     Zheng, Y. Q., W. Y. Liu, T. Lv, M. Luo, H. F. Hu, P. Lu, S. I. Choi, C. Zhang, J. Tao, Y. M. Zhu, Z. Y. Li, Y. N. Xia, "Seed-Mediated Synthesis of Gold Tetrahedra in High Purity and with Tunable, Well-Controlled Sizes," Chemistry - An Asian Journal 9, 2635-2640 (2014).
31.     Zheng, F.; Logvenov, G.; Bozovic, I.; Zhu, Y.; He, Q.;“Structural origin of enhanced critical temperature in ultrafine multilayers of cuprate superconducting films”, Phys. Rev. B, 89   184509   (2014).
32.     Zhou, H., Wang, H.Q., Li, Y., Li, K., Kang, J., Zheng, J.C., Jiang, Z., Huang, Y., Wu, L., Zhang, L., Kisslinger, K., and Zhu, Y., “Evolution of Wurtzite ZnO Films on Cubic MgO (001) Substrates: A Structural, Optical, and Electronic Investigation of the Misfit Structures”, ACS Appl. Mater. Interfaces, 6 13823-13832 (2014).